We show how we can merge two run-length compressed Burrows-Wheeler Transforms (RLBWTs) into a run-length compressed extended Burrows-Wheeler Transform (eBWT) in $O (r)$ space and $O ((r + L) \log (m + n))$ time, where $m$ and $n$ are the lengths of the uncompressed strings, $r$ is the number of runs in the final eBWT and $L$ is the sum of the longest common prefix (LCP) values at the beginnings of those runs.
翻译:我们展示了如何将两个游程编码压缩的Burrows-Wheeler变换(RLBWTs)合并为一个游程编码压缩的扩展Burrows-Wheeler变换(eBWT),其空间复杂度为$O (r)$,时间复杂度为$O ((r + L) \log (m + n))$。其中$m$和$n$为未压缩字符串的长度,$r$为最终eBWT中的游程数,$L$为这些游程起始位置的最长公共前缀(LCP)值之和。