The Gale-Berlekamp switching game is played on the following device: $G_n=\{1,2,\ldots,n\} \times \{1,2,\ldots,n\}$ is an $n \times n$ array of lights is controlled by $2n$ switches, one for each row or column. Given an (arbitrary) initial configuration of the board, the objective is to have as many lights on as possible. Denoting the maximum difference (discrepancy) between the number of lights that are on minus the number of lights that are off by $F(n)$, it is known (Brown and Spencer, 1971) that $F(n)= \Theta(n^{3/2})$, and more precisely, that $F(n) \geq \left( 1+ o(1) \right) \sqrt{\frac{2}{\pi}} n^{3/2} \approx 0.797 \ldots n^{3/2}$. Here we extend the game to other playing boards. For example: (i)~For any constant $c>1$, if $c n$ switches are conveniently chosen, then the maximum discrepancy for the square board is $\Omega(n^{3/2})$. From the other direction, suppose we fix any set of $a$ column switches, $b$ row switches, where $a \geq b$ and $a+b=n$. Then the maximum discrepancy is at most $-b (n-b)$. (ii) A board $H \subset \{1,\ldots,n\}^2$, with area $A=|H|$, is \emph{dense} if $A \geq c (u+v)^2$, for some constant $c>0$, where $u= |\{x \colon (x,y) \in H\}|$ and $v=|\{y \colon (x,y) \in H\}|$. For a dense board of area $A$, we show that the maximum discrepancy is $\Theta(A^{3/4})$. This result is a generalization of the Brown and Spencer result for the original game. (iii) If $H$ consists of the elements of $G_n$ below the hyperbola $xy=n$, then its maximum discrepancy is $\Omega(n)$ and $O(n (\log n)^{1/2})$.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员