In this paper, we propose a new distillation method for extracting knowledge from Large Foundation Models (LFM) into lightweight models, introducing a novel supervision mode that does not require manually annotated data. While LFMs exhibit exceptional zero-shot classification abilities across datasets, relying solely on LFM-generated embeddings for distillation poses two main challenges: LFM's task-irrelevant knowledge and the high density of features. The transfer of task-irrelevant knowledge could compromise the student model's discriminative capabilities, and the high density of features within target domains obstructs the extraction of discriminative knowledge essential for the task. To address this issue, we introduce the Proxy Relational Graph (PRG) method. We initially extract task-relevant knowledge from LFMs by calculating a weighted average of logits obtained through text prompt embeddings. Then we construct sample-class proxy graphs for LFM and student models, respectively, to model the correlation between samples and class proxies. Then, we achieve the distillation of selective knowledge by aligning the relational graphs produced by both the LFM and the student model. Specifically, the distillation from LFM to the student model is achieved through two types of alignment: 1) aligning the sample nodes produced by the student model with those produced by the LFM, and 2) aligning the edge relationships in the student model's graph with those in the LFM's graph. Our experimental results validate the effectiveness of PRG, demonstrating its ability to leverage the extensive knowledge base of LFMs while skillfully circumventing their inherent limitations in focused learning scenarios. Notably, in our annotation-free framework, PRG achieves an accuracy of 76.23\% (T: 77.9\%) on CIFAR-100 and 72.44\% (T: 75.3\%) on the ImageNet-1K.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员