Evaluating the conversational abilities of large language models (LLMs) remains a challenging task. Current mainstream approaches primarily rely on the "LLM-as-a-judge" paradigm, where an LLM is prompted to serve as an evaluator to assess dialogue quality. However, such methods often suffer from various biases, which undermine the reliability and consistency of the evaluation results. To mitigate these biases, recent methods employ multiple LLMs as judges and aggregate their judgments to select the optimal assessment. Although effective, this multi-judge approach incurs significant computational overhead during inference. In this paper, we propose an efficient dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model. Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast, flexible, and fine-grained dialogue quality assessment. Extensive experiments on seven single rating and pairwise comparison dialogue evaluation benchmarks demonstrate that our method outperforms existing baselines across diverse scenarios, showcasing its efficiency and robustness.


翻译:评估大型语言模型(LLM)的对话能力仍然是一项具有挑战性的任务。当前的主流方法主要依赖于“LLM即评判者”范式,即通过提示LLM作为评估器来评判对话质量。然而,此类方法常受多种偏差影响,从而损害评估结果的可靠性与一致性。为减轻这些偏差,近期方法采用多个LLM作为评判者,并汇总其判断以选择最优评估。尽管有效,这种多评判者方法在推理过程中会产生显著的计算开销。本文提出一种高效的对话评估器,通过将多个LLM评判者的偏好知识聚合到单一模型中,从而捕捉其集体智慧。我们的方法在保持多样化多评判者反馈优势的同时,大幅降低了评估成本,实现了快速、灵活且细粒度的对话质量评估。在七个单评分和成对比较对话评估基准上的大量实验表明,我们的方法在多种场景下均优于现有基线,展现了其高效性与鲁棒性。

0
下载
关闭预览

相关内容

大语言模型是基于海量文本数据训练的深度学习模型。它不仅能够生成自然语言文本,还能够深入理解文本含义,处理各种自然语言任务,如文本摘要、问答、翻译等。2023年,大语言模型及其在人工智能领域的应用已成为全球科技研究的热点,其在规模上的增长尤为引人注目,参数量已从最初的十几亿跃升到如今的一万亿。参数量的提升使得模型能够更加精细地捕捉人类语言微妙之处,更加深入地理解人类语言的复杂性。在过去的一年里,大语言模型在吸纳新知识、分解复杂任务以及图文对齐等多方面都有显著提升。随着技术的不断成熟,它将不断拓展其应用范围,为人类提供更加智能化和个性化的服务,进一步改善人们的生活和生产方式。
【KDD2024】面向鲁棒推荐的决策边界感知图对比学习
专知会员服务
21+阅读 · 2024年8月8日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员