Human mobility and other social activity patterns influence various aspects of society such as urban planning, traffic predictions, crisis resilience, and epidemic prevention. The behaviour of individuals, like their communication frequencies and movements, are shaped by societal and socio-economic factors. In addition, the differences in the geolocation of people as well as their gender and age cast effects on their activity patterns. In this study we focus on investigating these patterns by using mobile phone data, specifically the call detail records (CDRs), to analyze the social communication and mobility patterns of people. This dataset can provide us insight into the individual and population-level behaviours in rural and urban environments on a daily, weekly and seasonal basis. The results of our analyses show that in the urban areas people have high calling activity but low mobility, while in the rural areas they show the opposite behaviour, i.e. low calling activity combined with high mobility. Overall, there is a decreasing trend in people's mobility through the year even though their calling activity remained consistent except for the holidays during which time the communication frequency drops markedly. We have also observed that there are significant differences in the mobility between the work days and free days. Finally, the age and gender of individuals have also been observed to play a role in the seasonal patterns differently in urban and rural areas.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
数字孪生城市研究报告
智能交通技术
11+阅读 · 2018年12月23日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
数字孪生城市研究报告
智能交通技术
11+阅读 · 2018年12月23日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员