Person re-identification (ReID) is an extremely important area in both surveillance and mobile applications, requiring strong accuracy with minimal computational cost. State-of-the-art methods give good accuracy but with high computational budgets. To remedy this, this paper proposes VisNet, a computationally efficient and effective re-identification model suitable for real-world scenarios. It is the culmination of conceptual contributions, including feature fusion at multiple scales with automatic attention on each, semantic clustering with anatomical body partitioning, a dynamic weight averaging technique to balance classification semantic regularization, and the use of loss function FIDI for improved metric learning tasks. The multiple scales fuse ResNet50's stages 1 through 4 without the use of parallel paths, with semantic clustering introducing spatial constraints through the use of rule-based pseudo-labeling. VisNet achieves 87.05% Rank-1 and 77.65% mAP on the Market-1501 dataset, having 32.41M parameters and 4.601 GFLOPs, hence, proposing a practical approach for real-time deployment in surveillance and mobile applications where computational resources are limited.


翻译:行人重识别(ReID)在监控与移动应用领域具有极其重要的地位,需要在最小计算成本下实现高精度识别。现有先进方法虽能提供良好精度,但通常伴随高昂计算开销。为解决此问题,本文提出VisNet——一种适用于实际场景的高计算效率且性能优异的行人重识别模型。该模型融合了多项创新设计:包括具有自动注意力机制的多尺度特征融合、基于解剖学身体分区的语义聚类、用于平衡分类语义正则化的动态权重平均技术,以及采用FIDI损失函数以提升度量学习性能。多尺度特征融合直接整合ResNet50第1至4阶段特征而无需并行路径,语义聚类则通过基于规则的伪标注引入空间约束。VisNet在Market-1501数据集上取得87.05% Rank-1准确率与77.65% mAP,仅需32.41M参数量与4.601 GFLOPs计算量,为计算资源受限的实时监控与移动应用场景提供了实用解决方案。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员