We consider the sampling problem from a composite distribution whose potential (negative log density) is $\sum_{i=1}^n f_i(x_i)+\sum_{j=1}^m g_j(y_j)+\sum_{i=1}^n\sum_{j=1}^m\frac{\sigma_{ij}}{2\eta} \Vert x_i-y_j \Vert^2_2$ where each of $x_i$ and $y_j$ is in $\mathbb{R}^d$, $f_1, f_2, \ldots, f_n, g_1, g_2, \ldots, g_m$ are strongly convex functions, and $\{\sigma_{ij}\}$ encodes a network structure. % motivated by the task of drawing samples over a network in a distributed manner. Building on the Gibbs sampling method, we develop an efficient sampling framework for this problem when the network is a bipartite graph. More importantly, we establish a non-asymptotic linear convergence rate for it. This work extends earlier works that involve only a graph with two nodes \cite{lee2021structured}. To the best of our knowledge, our result represents the first non-asymptotic analysis of a Gibbs sampler for structured log-concave distributions over networks. Our framework can be potentially used to sample from the distribution $ \propto \exp(-\sum_{i=1}^n f_i(x)-\sum_{j=1}^m g_j(x))$ in a distributed manner.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员